Where is machine vision used?

08 Apr.,2024

 

Introduction to Machine Vision

It has become a superior technology for automated visual inspection in manufacturing worldwide. Due to increasing system integration competence and awareness of the technology, there has been a remarkable growth in adoption in India recently. When it comes to "teaching" the machines (Machine Learning) what to search for, these systems are simple to train and teach, reducing the integration complexity.

However, it's critical to comprehend how this technology can be used in production practically. There are several application categories. To determine the system architecture and technology to invest in, you must first select the type of application your request fits within. Depending on your application's requirements, you may need one (or possibly many) functional requirements.

A solution to assist those who provide critical infrastructure security with a powerful way of identifying intruders, tracking people or objects.

Taken From Article, Vision Analytics Challenges

What is Machine Vision?

It is the automated visual inspection of manufactured things using industrial cameras, lenses, and lighting. It is a real-time method of inspecting components that is both rapid and accurate. It can picture and analyze every item coming down a high-speed line, ensuring a hundred percent quality control.

It can automate many industrial inspections, including visual inspections for defects and problems, presence-absence checks, product type verifications, measures, and code readings.

What are the applications of Machine Vision?

  • Object detection: On the machine side, component developments are giving much improved raw materials, such as a more extensive range of cameras used to create particular picture capturing solutions, new lenses, complicated robotics, and more.
  • Measurement: As the name suggests, Measurement apps are used to determine the exact dimensions of items and are done by locating specific points on a photograph and obtaining geometrical measures from it.
  • Flaw Detection: Flaw detection software detects surface flaws, dents, and scratches on a product's surface. Flaw detection apps must be rigorously objectified to separate "acceptable" problems from intolerable faults. Artificial intelligence-based machine vision is excellent for these applications since instances train the system rather than "rules."
  • Print defect identification: The purpose of print defect identification is to locate printing anomalies such as incorrect color shades or missing or defective sections of the print.
  • Identification: It identification entails identifying a part or product to trace it throughout the manufacturing or logistics process to ensure that the correct item is produced. Reading characters (OCR) or barcodes can be used to identify objects.
  • Locating: It is routinely utilized to find things in applications like robotic guidance. Its purpose is to determine the coordinates and location of a target object. Its data can pick up the object or do any other task requiring this position. The machine vision application needs its system to be taught the child component of interest to recognize the part during manufacture.
  • Counting: Counting is the use of it is to count things of interest, as the name indicates.
The method of transforming unstructured text data into significant data for analysis, to estimate customer views, product evaluations, and feedback.

Click to explore about, Text Analytics Techniques

Which industries commonly utilizes?

Vision may be beneficial to any industrial facility with a repeated procedure. It is widely used in various sectors, including automotive, plastics, food and packaging, medical devices, and electronics.

What are the main components of Machine Vision?

Cameras, lenses, illumination, and image processing equipment make up its systems. Each component is chosen based on the application:

  • Camera: Picture sensors in cameras that transform light into digital image data for transmission to the controller.
  • Lens: Lenses are used to concentrate light onto the picture sensor.
  • Light: Any machine vision setup requires careful light selection; a system can't investigate what the camera can't see. The form, size, and color of illumination and the distance and angle from which it is installed may all be tuned to highlight the things being examined while avoiding any impacts from the surrounding environment.
  • Unit for Image Processing: Picture processing units, also known as controllers, process image input and extract crucial information using predefined algorithms.

How can Computer Vision be beneficial Machine Vision?

The application of machine vision technologies in automation and industrial lines is well known. Itssystems allow a system to minimize the time humans are involved in several tasks. This might happen during a procedure like inspection or manufacture. The proper application of its systems in an end-of-line setup increases productivity and improves work output correctness by detecting errors before client reception. Because it may be connected with other systems, such as conveyors, it can be used in potentially dangerous or clean environments where a person could be polluted or hurt.

Vision systems increase product quality by reducing human error and ensuring quality checks on all goods passing through the line. It has a cascade effect, decreasing the overall production cost in terms of both time and money, as fewer defects and faulty items emerge and never make it to the next stage, incurring time delays. This helps prevent defective items from reaching the end customer and producing unfavorable publicity, which some firms have not avoided.

AI-based Video Analytics's primary goal is to detect temporal and spatial events in videos automatically.

Click to explore about, AI-based Video Analytics

How does a Machine Vision system work?

Let's look at how the above components interact when it checks a product's manufacturing process and widespread use of the technology.

  • After identifying the presence of a product by the sensor, the procedure begins.
  • The sensor then activates a light source to illuminate the region and a camera to picture the product or one of its components.
  • The captured image by the camera is converted into digital data by frame-grabber. The frame-grabber (a digitizing device) converts the image captured by the camera into digital data.
  • The digital file is kept on a computer so the system software may evaluate it.

The program analyses the file to a set of specified criteria to find flaws. The product will fail inspection if a defect is discovered.

Computer Vision vs. Machine Vision

Computer vision has a sub-category called machine vision. Both terms are interchangeable. The operation of its system necessitates using a computer and particular software, but the computer vision process does not require a machine. Not only can computer vision scan digital web photographs or videos, but it can also analyze "images" from motion detectors, infrared sensors, and other sources.

According to the Artificial Intelligence Global Surveillance index, at least 75 out of 176 countries globally are actively using AI-based surveillance technologies.

Click to explore about, How AI Is Making An Impact On The Surveillance World

How do Computer Vision and Machine Vision work together?

All kinds of computer-controlled machinery can now perform more intelligently and securely thanks to computer vision. Computer vision lets robots operate better and in more diversified ways than ever before, from massive factory and agricultural equipment to tiny drones that can recognize humans and follow them autonomously.
The benefits of its for inspection purposes have long been recognized in heavy industries. Cameras and computers can record and process pictures significantly more precisely and quickly than humans. There can be no mistakes in delicate production line manufacturing, such as generating components for pacemakers.

Human inspectors are just too dangerous for such extensive checks, and it's simple to see why when you consider human limits vs. the capabilities of a computer eye and brain:

  • To merely look at the photographs submitted on Snapchat in the last hour would take a person ten years.
  • Many modern manufacturing businesses would not compete if they did not include computer-driven machine checks in their operations. Manufacturing, packing, and delivering food are some of the most common uses.

Every day, machine vision is utilized to reduce waste during the food sorting process, ensure adequately packaged for transportation, and validate all labels. A store will issue an instant Emergency Product Withdrawal notice (EPW) and heavy fines if food is mislabeled. In an industry that can't afford to take chances with public health, too many EPWs may gravely harm a supplier's image. With all of the information that food labels must now include as a legal requirement, a human cannot possibly check the thousands of branded products that a typical packaging plant generates every day.

Click here for our Computer Vision Services and Solutions

Our solutions cater to diverse industries with a focus on serving ever-changing marketing needs.

Conclusion

There are already many future machine vision possibilities, which are regularly growing. The potential for new applications increases as the technology into vision systems improves. This is evident in the sector's growth. New technologies are constantly being developed and enhanced. This implies that it will be relevant to more enterprises and that the created solutions will also be more versatile and tailored to individual needs. Deep learning, cloud computing, faster processors, and data integration tools bring up new possibilities in computer vision. Machine learning will help the manufacturing floor, subsequently sharing production data with the more extensive corporate ERP.

This article is more than 4 years old.

One of the simplest ways to understand a machine vision system is to consider it the “eyes” of a machine. The system uses digital input that’s captured by a camera to determine action. Businesses use machine vision systems in a variety of ways to improve quality, efficiency and operations.

What is Machine Vision And How Is It Used In Business Today?

Adobe Stock

How do machine vision systems work?

Some manufacturing facilities have used machine vision systems since the 1950s, but it was in the 1980s-1990s when things really started to expand. Regardless of an industrial or non-industrial application, a combination of software and hardware work together to make machine vision systems possible. Here are the typical components involved:

  • Sensors
  • Frame-grabber
  • Cameras (digital or analog)
  • Lighting sufficient for cameras to capture quality images
  • Software and computer capable of analyzing images
  • Algorithms that can identify patterns; important in some use cases
  • Output such as a screen or mechanical components

Let’s look at how these components work together when machine vision is used to inspect a product in a manufacturing operation, a very common example of a machine vision system in practice.

The process begins when a sensor detects the presence of a product. The sensor then triggers a light source to illuminate the area and a camera to capture an image of the product or a component of the product. The frame-grabber (a digitizing device) translates the camera’s image into digital output. The digital file is saved on a computer so it can be analyzed by the system software. The software compares the file against a set of predetermined criteria to identify defects. If a defect is identified, the product will fail inspection.

What’s the difference between machine vision and computer vision?

Computer vision and machine vision are overlapping technologies. A machine vision system requires a computer and specific software to operate while computer vision doesn’t need to be integrated with a machine. Computer vision can, for example, analyze digital online images or videos as well as “images” from motion detectors, infrared sensors or other sources, not just a photo or video. Machine vision is a sub-category of computer vision.

How is machine vision used in business?

In addition to using machine vision for quality control purposes, it is helping businesses in many ways today for identification, inspection, guidance and more. Here are a few examples:

Correcting production line defects: In addition to using machine vision to identify defective products, machine vision can help determine where the problems are being introduced in a production line so corrective action can be taken.

Farming: Machine vision is used by harvesting machines to detect the location of grapes on the vine so that robotic harvesting machines can pick the bunches without destroying any grapes. Machine vision is also used as part of farm machinery to monitor crops and detect diseases on plants.

Inventory control and management: Machine vision is imperative in the process of reading barcodes and labels on components and products. This has important applications for inventory control, but also in the manufacturing process to ensure the correct components get added as products move down an assembly line. Machine vision is critical for the bin-picking done in warehouses by robots.

Product tracking and traceability: In heavily regulated industries such as pharmaceuticals, it’s important to be able to track ingredients, product serial numbers and monitor expiration dates which machine vision makes extraordinarily easier.

Measurements and calibration: Whether measuring the gap in a spark plug to ensure it fits specifications or identifying a gauge that needs calibrated, machine vision automates and makes the process quite efficient.

Safety: Whether on a construction site with heavy equipment or tracking food supplies, machine vision can improve safety with great efficiency.

As the technology continues to get more sophisticated, the use cases for machine vision will continue to grow. 

Where is machine vision used?

What is Machine Vision And How Is It Used In Business Today?